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Diffusion in a Symmetric Bistable Potential: 
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An approximation procedure for the solution of stochastic nonlinear equations, 
which was derived from a variational principle in a previous paper, is applied to 
the problem of a particle that diffuses in a symmetric bistable potential starting 
from the point of unstable equilibrium. The second moment ()~2(t)) and 
variance (.~4(t))-()~2(t))2 for the particle's position X(t) are calculated as 
functions of the time t. Good agreement is found with results recently obtained 
by Baibuz et al. from an approximate evaluation of a path integral expression 
for the probability density. 
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1. I N T R O D U C T I O N  

It is well known that a deterministic macroscopic  description of the 
dynamics of a system evolving from an unstable state is impossible, because 
of the essential role played by fluctuations. (l) A simple model that 
illustrates this fact and has received much at tention in recent years is 
provided by the mot ion  of a particle diffusing in a symmetric bistable 
potential from the point  of unstable equilibrium. (1"2) However,  it appears 
that the formulat ion of an approximat ion  procedure that is both accurate 
and sufficiently simple that it can be extended to systems with several 
degrees of freedom presents some difficulties. 

Provided that the fluctuating force takes the form of white noise, two 
equivalent representations of such problems exist in the form of the 
Langevin equat ion and the F o k k e r - P l a n c k  equation, but it would appear  
that the former is better suited to the considerat ion of systems with several 
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degrees of freedom. For such systems the probability density is a function 
of several variables and is consequently difficult to deal with; moreover, it 
contains much more information than is normally required about the 
system. Other disadvantages of the Fokker-Planck equation approach are 
the difficulty of calculating nonsimultaneous correlations and also the dif- 
ficulty of treating systems driven by random forces other than white noise. 

Both the Langevin and Fokker-Planck equations have been used as 
the basis for various approximations for single-particle diffusion and 
related problems, (3 6) but most of these are applicable only in limiting 
situations when, for example, the time becomes large or the strength of the 
fluctuations is small. Apart from the extremely time-consuming method of 
direct numerical simulation, the only method that seems to be applicable 
over a wide range of times and parameter values is that of Baibuz et  a[., (7) 

which makes use of a path integral expression for the probability density. 
The results obtained by these authors will be used for comparison with the 
calculations reported here. 

Of the methods based on the Langevin equation, particular mention 
should be made of the scaling theory of Suzuki, !8) which will be relevant to 
the work described here. In its simplest form scaling theory is based on an 
approximate description of the particle motion in which the time interval is 
divided into three subintervals: 

(i) An initial period (0, Zo) when the particle oscillates about the 
point of unstable equilibrium. The assumption is made that, during this 
period, the nonlinear term in the equation of motion is negligible. 

(ii) An intermediate period during which the random force is neglec- 
ted, so that the particle moves deterministically toward one of the points of 
stable equilibrium. 

(iii) A final period when the particle oscillates about a point of stable 
equilibrium, the nonlinear term being again neglected. 

Although the sharp division into different regimes and the neglect of 
transitions across the instability point are oversimplifications, computer 
simulations (9) suggest that the basic idea is not too far from the truth if the 
strength of the fluctuating force is sufficiently small. The method has been 
further developed and generalized by de Pasquale et  al., (9) who have 
introduced a perturbation expansion about such a quasideterministic 
motion. However, the evaluation of the terms of this series requires the 
numerical calculation of stochastic integrals and is therefore rather difficult. 
Also, as might be anticipated, the results obtained appear to be less 
accurate as one approaches the critical point when the double-well poten- 
tial degenerates into a single well. 
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Here we shall approach this problem by using an approximation 
procedure, which we have called the "piecewise statistical linearization 
approximation," or PSLA, which was derived by means of a variational 
principle in a previous paper (m) and was shown to give quite accurate 
results for the case of diffusion in a single well. The approximation provides 
a natural generalization of statistical linearization and may be formulated 
for a wide range of stochastic nonlinear systems, not necessarily driven by 
white noise. In Section 2 we briefly summarize the variational derivation of 
the PSLA and in Sections 3 and 4 we aply it to the case of a particle 
diffusing in a potential of the form 

1 2 1 4 4 

where/~ is negative or zero, corresponding to the double well and critical 
case, respectively. The quantities calculated are the second moment 
< 2 2 ( 0 ) ,  the variance < 2 4 ( 0 )  - < 2 2 ( 0 )  2 , and the probability density 
function (6{x- 2(t)} ). 

2. THE PIECEWISE STATISTICAL L INEARIZATION 
A P P R O X I M A T I O N  

Let us suppose that 2(~) satisfies on the interval (0, T) an equation of 
motion of the form 

2(T) = A ( 2 ( r ) ) + f ( T )  (1) 

where A is a polynomial function, f ( r )  is a white noise function with 
strength parameter normalized to unity, and 2 satisfies the sharp initial 
condition 2 ( 0 ) = x  o. If it is desired to calculate the expectation value 
( F [ 2 ] ) ,  where F is a functional of the solution 2 of (1), then one is led to 
consider the quantity 

~r F[X]-Ivd~o Y(z){k(z)-A(X(r))-f(r)}) (2) 

where X and Y are arbitrary random functions such that X(0)=  Xo and 
Y(T)=0.  It is then easily verified that the stationary value of J is 
< F [ 2 ]  ). Approximations may be generated by using trial functions for X 
and Y that are such that J can be evaluated. 

We consider the following choice of trial functions: 

X(z) =k( r ,  r I r d r  ' K(z, r', c#) f(z') 
~ o  

f Y(r)=l(z, qs)+ dr' L('c, "c', ~)  f (~ ' )  
(3) 
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where k, K, l, and L arbitrary, apart from the conditions needed to ensure 
that X(0)=x0,  Y(T)=0;  and 45 denotes a fixed set {~b:} of N linear 
functionals of f ( r )  on the interval (0, T). The functionals qsj may, without 
loss of generality, be chosen as statistically orthonormal and so may be 
written in the form 

g>/= for & ~j(z) f (v)  

where the "basis" functions {:(r) are orthonormal on (0, T). The Gaussian 
random function )~(~) defined as 

f(~) = f ( Q -  {j(~) ~: 

is such that its conditional expectation value, for given values ~b: of the 
functionals ~b/, is zero: 

(:(~))~- 

Also, it may be seen that 

(f(~) a(4- ~)> = 0  
(,5(~ - ,~) ) 

( f ( ' r )  f ( ' c ' )  ) = r('c, "c') = 6('c - "c') - ~/('c) ~/('r') 

where a summation from 1 to N over repeated indices is implied. 
Substituting the trial functions (3) into the expression for J and 

seeking a stationary value with respect to the arbitrary functions k, K, l, 
and L, one obtains equations for these functions. Those for k and K are 

P A " ( k )  + A(4~(k) = ~/~j + A(k)  +~.  

5.3 
+ --6-(. P3At6) (k )  + "'" 

(4) 
{ K(r, r', ~b )=c~( r - r ' )+  A ' ( k ) + ~ . A ' " ( k )  

5.3 } 
+ -~. pZA~S)(k)  + "'" K(r ,  ~', (b) 

where p is given by 

p(~, ~b) = d~' &" K(z, ~', ~b) r(z', z") K(r, r", ~b) 
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The solution of the equation for K is 

K(z, r', O) = eS(~)-s(:')O( z - { )  

where 0 is the step function defined by 

0, r < O  
0(~)= 1, r > 0  

and where 

with s(0) = 0. 
follows: 

3p ~T3 ~(~)= A'(k) +~. A'"(k)+ . p2A(5}+ ... (6) 

The quantity p may then be expressed in terms of s as 

(7) 

The stationary value of .J, which is our approximation for <F[X] ), is 
given by 

' ;  l I  s ]) (2~)u/2 d(~e -~2/2 F k(*,{b)+ dz'K(v,~' , (b)/( , ' )  

where the conditional expectation value in the integrand may be written in 
terms of k and p for many functionals F of interest. Thus, for example, for 
the second and fourth moments (J~z(t)) and (X4( t ) )  with re(0 ,  T) the 
approximations are 

1 P 
J d~b e o2/2[k2(t, O) + p(t, ~b)] (27z) N/2 

1 
(2~z) u/2 f d(b e ~2/2[k4(t, (3) + 6k2(t, ~b) p(t, q)) + 3p2(t, ~b)] 

(8) 

and for the probability density function ( b { x - X ( t ) } )  we get 

1 

r ) [p(t,  ~)],/2 
(2rc)(m+ 1)/2 f d~ exp(-- 1 2 exp{ [ x - k ( t ,  6)]2/2p(t, ~b)} 

which is a continuous superposition of Gaussians with different means and 
variances. 

221 
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The PSLA may be summarized in the following way: 

1. The set of all realizations of the random force is divided into sub- 
sets according to the values ~b: taken by the linear functionals ~:. 

2. In each such subset the solution of (1) is approximated by a linear 
functional of f as in ordinary statistical linearization. 

3. Mean values of interest are calculated by a two-stage averaging 
process, the average over each subset being performed analytically 
and the further averaging by a numerical N-fold integration over 
the ~bj with Gaussian measure. 

The functionals qs/therefore play the role of reserved linear functionals, t1~ 
For N = 0 it is clear that one recovers simple time-dependent statistical 

linearization, while for N ~  oe we have ~: ( r )~j ( r ' )~  6 ( r - r ' )  and it may 
be verified that p--* 0 while k(~, q~) tends to the exact solution of (1). The 
hope is that useful approximations can be obtained for small N so that the 
numerical integration in expressions such as (8) can be performed directly 
without resorting to Monte Carlo methods. In a previous paper (1~ this was 
shown to be the case for the problem of diffusion in a single-well potential. 

The trial function (3) can be generalized by allowing the linear 
functionals ~j also to be subject to variation within the constraints 
imposed by the orthonormality conditions. If the ~j are otherwise 
unrestricted, the resulting approximations are rather complicated and 
involve coupled integrodifferential equations relating k, K, l, and L and the 
optimized basis functions. A simpler approach that we adopt here is to 
choose basis functions of a particular form but containing adjustable 
parameters that can then be varied to obtain a stationary value for the 
quantity of interest. This stationary value is then the required 
approximation. Consideration of causality shows that, if the functional F 
depends on X(r) only for r in the interval (0, t), then the basis functions 
should be chosen to vanish outside this interval. For the single-well poten- 
tial it appears that satisfactory results can be obtained with any convenient 
set of basis functions satisfying this requirement, but it will be seen that, for 
the double-well potential, this is no longer true. However, when the choice 
of basis functions is guided by the simple considerations of scaling theory, 
the PSLA is equally effective for the double well. 

3. T H E  D O U B L E - W E L L  P O T E N T I A L  

The Langevin equation now takes the form 

~(~) = - f l2 ( r )  - 223(3) + f ( r )  
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with _~(0)= 0, where fl may be taken as - 1  for the double well and 0 for 
the critical case. The equations for the PSLA are accordingly 

k + fik + 2k 3 + 32kp = ():r 

= fl + 32k 2 + 32p (9) 

with k(0)=  0, s (0)= 0. Considering first the simple statistical linearization 
approximation given by N =  0, it is seen that the solution of (9) then gives 
k = 0  while p increases monotonically to the asymptotic value 
[--fi+(f12+62)l/2]/6)L. The probability density corresponding to this 
choice of trial function for X is 

[2~p(t)] 1/2 exp[ -x2 /2p( t ) ]  

which is a Gaussian, permanently centered at the origin, which broadens 
with increasing r. This is quite different from the double-peak density that 
actually develops, so it is not surprising to find that the values obtained for 
the moments are inaccurate except for small 3. 

It is known, however, that statistical linearization works quite well if 
the particle starts from a point sufficiently far from the origin that there is 
an overwhelming probability of a particular one of the points of stable 
equilibrium being attained. (11) This suggests that, if the set of all 
realizations of the particle motion could be divided into two subsets 
according to which stable state is eventually attained, then a good 
approximation might be obtained by applying statistical linearization 
separately in these subsets. According to scaling theory, however, this 
division is determined by the solution of the linearized equation 

2(3) = X(3) + f ( z )  

in the initial period (0, to), where we have now put fl = -1  corresponding 
to the double-well potential. One is therefore led to the idea that a suitable 
reserved linear functional for incorporation into the PSLA might be of the 
form 

~o dr exp( -~ )  f ( t )  

Instead of adopting a sharp cutoff at to, we shall instead extend the 
integration over the full range of t values consistent with causality and 
include an adjustable parameter b in the exponential. Thus, the basis 

822/46/1-2-15 
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function we shall employ, for calculation of the mean value of a functional 
depending only on f ( r )  for ~ s (0, t), is given by 

2b ,] 1/2 
~(t)= 1 - e x p ( - 2 b t ) J  exp(-bv)  0 ( t - r )  (10) 

To calculate (X2(t)),  for example, using the PSLA with N =  1, we 
therefore solve Eqs. (9), with the summation over j limited to the single 
term corresponding to the basis function (10), and then evaluate 

(2~)-i f d~) e-r + p(t)] 

Finally, the parameter b is adjusted to give a stationary value of this quan- 
tity and this is the required approximation for ()~2(t)). 

To calculate higher moments and the probability density, one can go 
through the same variational procedure. However, it will be seen that good 
accuracy can be obtained if the same basis function, with the same value of 
b, is used as in the calculation of ()72(t)). As well as reducing the amount 
of computation, this has the further advantage that relationships such as 

(22(0)  = f dx x2p(x, t) 

and realizability inequalities such as (24)>~ (~'2)2 are satisfied by the 
approximate quantities. This would not necessarily be so if different basis 
functions were used for calculating different quantities. The fact that the 
trial function gives quite accurate results for the mean values of several dif- 
ferent functionals indicates that this trial function is perhaps a good 
approximation to the exact ~'(~) for the vast majority of realizations. 

This last observation suggests that it may be possible to calculate 
corrections to the approximation described above by some sort of pertur- 
bation theory. We shall not pursue this idea further here, but instead we 
calculate corrections by applying the PSLA with N = 2 .  The simple 
procedure will be adopted of taking the first basis function {l(r) as that 
used for the N =  1 calculations, while {2(r) will be chosen as a convenient 
function orthogonal to ~l(r), such as (% + e,~){1(~) with % and ~1 deter- 
mined by the orthonormality conditions. 

4. C A L C U L A T I O N S  

Values of the second moment ( 2 2 ( 0 )  and the variance ~24(t))- 
( 2 2 ( 0 )  2 for the double-well potential with 2=0.01, 0.1, and 1/3 on the 
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Fig. 1. Values of (k2(t))  for 2=0.01 calculated with the PSLA. The N = I  and N = 2  
approximations are indistinguishable on this scale. ( 0 )  The results of Baibuz et  al. 

time interval 0 ~< t ~ 7 have been calculated for comparison with the results 
of Baibuz et al. In addition, the second moment and variance have been 
evaluated for the critical case/3 = 0, 2 = 2 for 0 ~< t ~< 1 for comparison with 
the values obtained by de Pasquale et al. 

Figures 1-3 show the values of (X2( t ) )  for the double-well potential 
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Fig. 2. Values of ()~2(/)) for 2=0.1 calculated with the PSLA. The N = I  and N = 2  
approximations are indistinguishable on this scale. ( � 9  The results of Baibuz e t  al. 
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Fig. 3. 
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Values of ~ ' 2 ( / ) ~  for 2= 1/3 calculated with the PSLA. The N= I and N=2 
approximations are indistinguishable. 

in the three cases considered, calculated by means of the PSLA with N = 1 

and N =  2 in the way described above. It will be seen that the differences 

between the values obta ined with the two approximat ions  are small in all 
cases. Figures 4~6 show the corresponding values for the variance 
( X 4 ( t ) ) - ( z ~ ' 2 ( / ) )  2. The values obta ined for the adjustable parameter  b 
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Fig. 4. Values of the variance (~-4(t)>_ (~2(t))2 for ,:~-0.01 calculated with the PSLA. 
The N = 1 and N = 2 approximations are indistinguishable. ( � 9  The results of Baibuz et  al. 
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Fig. 5. Values of the variance {)~4(t)) - -  { ~ 2 ( 1 ) ) 2  for 2=0.1 calculated with the PSLA. The 
upper curve is the N =  2 approximation and the lower curve the N ~  1 approximation. (Q)  
The results of Baibuz et al. 
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Fig, 6. Values of the variance fav4(/)) ( X 2 ( t ) )  2 for 2 = 1/3 calculated with the PSLA. The 
upper curve is the N = 1 approximation and the lower curve the N = 2 approximation. 
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Fig. 7. The values of the variational parameter b as a function of t for various values of 2: 
(a) 2 = 2 ,  (b) 2 =  1/3, (c) 2=0.1,  (d) 2=0.01. 
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Fig. 8. Values of ( 2 2 ( 0 )  for 2 = 2  calculated with the PSLA. The N = I  and N = 2  
approximations are indistinguishable on this scale. The points with error bars show the results 
obtained by de Pasquale et al. by direct numerical simulation. 
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are shown in Fig. 7 and it will be seen that b is close to 1 only when 2 is 
small, but t is not too small. This might be expected, since small 2 
corresponds to the case in which the troughs of the potential are deep, so 
that the argument based on scaling theory is more likely to be valid. The 
importance of an appropriate choice of basis function, especially for small 
2, has been checked by repeating these calculations using polynomial basis 
functions with no adjustable parameter  as in previous work on the single- 
well potential. (1~ It is found that the values obtained for the second 
moment  and variance are then much less accurate and appear to converge 
only slowly to the correct values as N increases. 

The results of the calculations for the critical case are shown in Figs. 8 
and 9 together with values obtained by de Pasquale et  aL using direct 
numerical simulation with an average over 9000 realizations being taken. 
Of course, in this case, the arguments that led to the particular choice of 
basis function do not aply and it is not surprising to find that b can become 
negative. 

The probability density function ( 6 { x - . , ~ ( t ) } )  has also been 
calculated as a function of x by means of the PSLA with N =  1 for the case 
of 2 = 1/3. Figure 10 shows the results for t = 0.3, 0.8, and 6.4 compared 
with those of Baibuz et  al. 
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0 0"2 0.4 0-6 0"8 t 1.0 

Fig. 9. Values of the variance (X4(t ) ) - (22(0)  2 for 2= 2 calculated with the PSLA. The 
upper curve corresponds to N= 1 and the lower curve to N= 2. The points with error bars 
show the results obtained by de Pasquale et aL by direct numerical simulation. 
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Fig. 10. The probability density function for 2 =  1/3, for (a) t=0.3, (b) t=0.8, and (c) 
t =6T4. ( 0 ,  I ,  T )  The results of Baibuz et aL for these three cases. 

5. C O N C L U S I O N  

The method described here appears to embody in a natural way the 
ideas of statistical linearization and scaling theory and incorporates them 
into a calculation scheme that seems more efficient than direct numerical 
simulation. It gives quite accurate results for both low-order moments and 
the probability density function, without involving an excessive amount of 
computation, for the double-well potential and the critical case as well as 
for the single well. In a future paper we hope to examine the application of 
this approach to systems with more degrees of freedom. 
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